
Appendix S1 – Details of likelihood computation

Here we provide further details for the likelihood computation of a phylogeny (see the Box
in the main text) and discuss two extensions: the inclusion of extant species missing in the
phylogeny and the computation of the number of species through time.

Topology of a phylogeny

The diversity-dependent birth-death model specifies the rates at which species speciate and
become extinct. The rates are such that if there are n species at the time a speciation
(extinction) event occurs, then each of these n species has the same probability to speciate
(become extinct). As a consequence, the probability that a certain phylogeny is predicted by
the diversity-dependent model is independent of its topology. The probability of a phylogeny
is a function of its branching times only. This property is illustrated in Figure S1. The three
phylogenies have the same branching times but a different topology. Hence, they have the
same probability.

We should point out that the term “probability of a phylogeny” is a misnomer for two reasons.
First, we are dealing with a probability density rather than with a probability, because the
branching times are continuous variables. Strictly speaking, the probability of a phylogeny is
zero. Second, what we call the probability of a phylogeny is really the probability of a vector
of branching times, thus using the common terminology for the constant-rate birth-death
model. Note that, because of the property mentioned above, the difference between the two
probabilities is a combinatorial factor that does not depend on the model parameters, and
hence does not affect the parameter estimation.
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Figure S1: Phylogenies, branching times and topologies. Three different phylogenies are
shown for five extant species (indicated by dots) at the present time tp. Our definition of the
branching times t1, t2, . . . is illustrated on the left axis. The first branching time t1 corresponds
to the crown node; the second branching time t2 corresponds to the initiation of a third lineage;
the third branching time t3 corresponds to the initiation of a fourth lineage; etc. As a result,
there are two lineages between times t1 and t2; there are three lineages between times t2 and
t3; etc. Time increases from the past towards the present, i.e., t1 < t2 < t3 < t4 < tp. The
three phylogenies have the same branching times, but their topologies, i.e., the order in which
lineages undergo branching events, differ. These phylogenies (same branching times, different
topology) have the same likelihood under the diversity-dependent birth-death model.

Likelihood of a phylogeny

As shown in the Box in the main text, the likelihood of a phylogeny can be obtained by
integrating q − 1 systems (B2) of linear ordinary differential equations (ODEs). Each sys-
tem corresponds to the dynamics between two successive branching points tk−1 and tk, and
transforms a vector of probabilities Qn(tk−1) into another vector of probabilities Qn(tk). We
denote this (linear) transformation by Ak(tk − tk−1). At the branching points tk the final
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condition of one system is linked with the initial condition of the next system by multiplying
Qn(tk) by k λn. We denote this (linear) transformation of the vector of probabilities Qn(tk)
by Bk.

The initial condition at the first branching time t1 can be represented as a vector v1 of
probabilities Qn(t1). All components of v1 are zero except for the second component which
is equal to one. The final condition at the present time tp can be represented as the scalar
product of a vector vp with the vector of probabilities Qn(tp). All components of vp are zero
except for the q-th component which is equal to one. As a result, the probability P (~t) of a
phylogeny with branching times ~t = (t1, t2, t3, . . . , tq−1) is given by

P (~t) = vp ·Aq(tp − tq−1)Bq−1Aq−1(tq−1 − tq−2)Bq−2 . . .

A4(t4 − t3)B3A3(t3 − t2)B2A2(t2 − t1) v1. (S1)

with v · w the scalar product of the vectors v and w.

We use a conditional version of the probability P (~t) as the likelihood. We condition on the
survival of the two lineages initiated at the crown node (otherwise, this node would not be
the crown node). The probability Pc(t1, tp) that these two lineages survive can be computed
as

Pc(t1, tp) = vc ·A2(tp − t1) v1, (S2)

with the vector vc having the first component equal to zero and all other components equal
to one. Finally, the likelihood L(~t) is defined as

L(~t) =
P (~t)

Pc(t1, tp)
. (S3)

We have checked numerically that Eq. (S3) corresponds to known likelihood formulas in two
special cases: (a) the linear birth-death model, i.e., when using diversity-independent rates,
λn = λ and µn = µ, and (b) the diversity-dependent pure birth model, i.e., when setting the
extinction rate to zero, µn = 0.

Phylogeny with missing species

Formula (S1) is still valid when including species extant at the present time tp, but missing in
the phylogeny. It suffices to modify the final vector vp. Without missing species, the vector
vp extracts Qq(tp) from the probability vector Qn(tp). With, say m, missing species, the
vector vp should select the probability Qq+m(tp). Hence, all components of vp are equal to
zero except for component q +m which is equal to one.

Number of species through time

We present an algorithm to compute the (expected) total number of species through time.
Note that the total number of species is different from the number of lineages, that is, the
number of species with descendants until the present time tp. We will present an algorithm
for the computation of the (expected) number of lineages through time in Appendix S2.

We define P (r(t)|~t) as the probability of having r species at time t (with t1 < t < tp)
conditional on the phylogeny, which is given by the branching times ~t. To compute P (r(t)|~t)
we use an approach similar to the likelihood computation (S1), except that, in addition, we
condition on the number of species r at time t. This conditioning can be accommodated in
the computation using a projection operator Cr. This operator sets all components of Qr(t)
to zero except for component r.
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Assuming that tk−1 < t < tk, the probability P (r(t),~t) of observing the phylogeny ~t and r
species at time t is given by

P (r(t),~t) = vp ·Aq(tp − tq−1)Bq−1Aq−1(tq−1 − tq−2)Bq−2 . . .

Ak+1(tk+1 − tk)Bk Ak(tk − t)Cr Ak(t− tk−1)Bk−1 . . .

A4(t4 − t3)B3A3(t3 − t2)B2A2(t2 − t1) v1. (S4)

Dividing by the probability P (~t) of the phylogeny ~t, we get the conditional probability
P (r(t)|~t),

P (r(t)|~t) =
P (r(t),~t)

P (~t)
. (S5)

Formula (S4) can be evaluated by integrating the master equation (B2). However, this ap-
proach is computationally demanding: after having integrated from t1 to t, the integration
from t to tp has to be repeated for all values for r. Efficiency can be gained by combining the
master equation (B2) with its corresponding backward equation,

d

dt
Qback

n (t) = µn (n− k)Qback
n+1 (t) + λn (n+ k)Qback

n−1 (t)− (µn + λn)nQback
n (t), (S6)

with Qback
n (t) the probability that a realization of the diversification process has n species at

time t and is consistent with the phylogeny from tp back to t. We have

P (~t) = Qq(tp) = Qback
2 (t1) =

∑
r

Qr(t)Qback
r (t),

illustrating that the master equation (B2) and the backward equation (S6) are interchange-
able. We can integrate the master equation (B2) from two species at time t1 to q species
at time tp (first equality), or integrate the backward equation (S6) from q species at time tp
back to two species at time t1 (second equality), or integrate the master equation (B2) from
two species at time t1 to r species at time t and the backward equation (S6) from q species
at time tp back to r species at time t, and take the sum over r (third equality). In the latter
case, we also have

P (r(t),~t) = Qr(t)Qback
r (t),

so that a single integration of (B2) and (S6) suffices to compute P (r(t),~t) for all values of r.

Further extensions

Further extensions of (S1) based on the master equation (B2) are possible. For example,
we can account for species present at the crown node but extinct at the present time. Al-
though these species are not represented in the phylogeny, they do contribute to the diversity-
dependent diversification process. It suffices to modify the initial vector v1 in (S1): with m
additional species, the vector v1 has a one at position m+ 2 and zeros elsewhere.

However, a problem arises for the conditioning (S2). We should guarantee that the additional
species at the first branching time t1 become extinct before the present time tp. However,
we cannot separate the descendants of these additional species (which should all become
extinct) from the descendants of the two crown species (which need not become extinct). In
Appendix S2 we show that this problem can be resolved by using a differential equation for a
two-dimensional probability distribution, rather than the one-dimensional distribution of the
master equation (B2).
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Appendix S2 – Extensions of likelihood computation

Here we discuss further extensions of our computational approach as presented in Appendix
S1. We present the computation of the number of lineages through time, and explain how
additional species at the crown node can be taken into account.

Combinatorial properties

We prove two combinatorial properties of the diversification process which we will need below.

Distribution of descendants over ancestors

Suppose that there are k ancestor species at time ta, and that each of them has descendant
species at a later time tb. Denote by ni the number of descendants of ancestor i, and by n the
total number of descendants at time tb. We claim that any configuration ~n = (n1, n2, . . . , nk)
with ni ≥ 1 and

∑
i ni = n is equiprobable. Note that there are

(
n−1
k−1

)
such configurations,

so that their probability equals 1/
(
n−1
k−1

)
.

To prove this property, we consider the effect of single (speciation or extinction) event on
the configuration probabilities. For example, consider n species and k ancestors, so that all
configurations ~n have the same probability. Assume a speciation event occurs. The probability
P+(~n) for a configuration ~n immediately after the event can be expressed in terms of the
probabilities P−(~n) immediately before the event:

P+(~n) =

k∑
i=1

ni − 1

n− 1
P−(~n− ~ei)

=

k∑
i=1

ni − 1

n− 1

1(
n−2
k−1

) =
n− k
n− 1

1(
n−2
k−1

) =
1(

n−1
k−1

) , (S7)

with ~ei a vector with a one at position i and zeros elsewhere. Hence, all configurations are
equiprobable after the speciation event. A similar computation holds for extinction events (the
computation uses the probability of lineage extinction, see below). This proves the property
because the dynamics between times ta and tb consist of a series of speciation and extinction
events.

Probability of lineage extinction

An extinction event of one of the n species can induce the extinction of one of the k lineages.
Assuming that all configurations of the n species over the k lineages are equiprobable, we
compute the probability Pext(n, k) that a species extinction induces a lineage extinction.

We first compute a related but different probability, namely the probability that a randomly
chosen lineage has only one species, and denote it by P ?

ext(n, k). A lineage has one species if
and only if the remaining n− 1 species belong to the remaining k − 1 lineages. Hence,

P ?
ext(n, k) =

(
n−2
k−2

)(
n−1
k−1

) =
k − 1

n− 1
. (S8)

On average there are k P ?
ext(n, k) lineages with one species, which is also the average number

of species without other species in its lineage. Hence,

Pext(n, k) =
k P ?

ext(n, k)

n
=
k(k − 1)

n(n− 1)
. (S9)
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Number of lineages through time

Here we present an algorithm for the computation of the (expected) number of lineages
through time for the diversity-dependent birth-death model. That is, at each time t we count
the number of species with descendants until the present time tp. Note that this number is a
fraction of the total number of species. We presented an algorithm to compute the (expected)
total number of species through time in Appendix S1.

We denote the first branching time (crown node) by t1 and the present time by tp. We
compute the number of lineages `(t) at time t (with t1 < t < tp) surviving until time tp. The
computation consists of integrating two systems of ordinary differential equations (ODEs),
one from t1 to t and another from t to tp.

From t1 to t

First, we integrate the dynamics for the probability of a configuration ~n starting from the two
crown species. Due to the equiprobability of configurations, it suffices to track the probability
of any pair (n, k) with n the total number of species and k the number of surviving lineages.
We are interested in k = 2 because the crown lineages should survive until the present time
tp. Hence, we have to compute the probability P (n; s) that there are n species at time s and
both crown lineages survive.

We construct a system of ODEs for the probabilities P (n; s). A speciation event occurs with
rate λn n, increases n by one and leaves k = 2 unchanged. An extinction event occurs with
rate µn n, decreases n by one, and either keeps k = 2 or gives k = 1. We are interested in the
first possibility, which has probability 1 − Pext(n, 2) = 1 − 2

n(n−1) . Hence, the dynamics for

P (n; s) are

d

ds
P (n; s) = λn−1 (n− 1)P (n− 1; s)

+ µn+1 (n+ 1)
(

1− 2
(n+1)n

)
P (n+ 1; s)

− (λn + µn)nP (n; s). (S10)

The initial condition at the first branching time t1 is given by P (2; t1) = 1, and all other
P (n; t1) = 0. We integrate this system of ODEs till time t. Note that 1−

∑
n≥2 P (n; t) equals

the probability that one of the crown lineages becomes extinct before time t.

From t to tp

Second, we consider the r species present at time t as ancestor species with descendants at
a later time s ≥ t. We integrate the dynamics for the probability of a configuration ~n. Due
to the equiprobability of configurations, it suffices to track the probability of any pair (n, k)
with n the total number of species and k the number of surviving lineages at time s out of
the r lineages at time t. Denote this probability by P (n, k, t; s). As the initial condition for
this second step we use the probabilities P (r; t) obtained in the first step.

We construct a system of ODEs for the probabilities P (n, k, t; s). A speciation event occurs
with rate λn n, increases n by one and leaves k unchanged. An extinction event occurs with
rate µn n, decreases n by one, and either leaves k unchanged or decreases k by one. The first

possibility has probability 1− Pext(n, k) = 1− k(k−1)
n(n−1) , whilst the second one has probability

Pext(n, k) = k(k−1)
n(n−1) . In the latter case, we have to guarantee that the extinction does not

induce the extinction of a crown lineage. This happens with probability 1 − Pext(k, 2) =
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1− 2
k(k−1) . Hence, the dynamics for P (n, k, t; s) are

d

ds
P (n, k, t; s) = λn−1 (n− 1)P (n− 1, k, t; s)

+ µn+1 (n+ 1)
(

1− k(k−1)
(n+1)n

)
P (n+ 1, k, t; s)

+ µn+1 (n+ 1) (k+1)k
(n+1)n

(
1− 2

(k+1)k

)
P (n+ 1, k + 1, t; s)

− (λn + µn)nP (n, k, t; s). (S11)

The initial condition at time t is given by P (k, k, t; t) = P (k; t), and P (n, k, t; t) = 0 if n 6= k.
We integrate this system of ODEs till time tp.

Note that 1 −
∑

n≥k≥2 P (n, k, t; tp) equals the probability that one of the crown lineages
becomes extinct before time tp. As a consequence, conditioning that this does not happen
corresponds to normalizing the probabilities P (n, k, t; tp) with n ≥ k ≥ 2. The resulting

distribution P̃ (n, k, t; tp) gives the probability of a pair (n, k) with n the total number of
species at time tp and k the number of lineages present at time t and surviving until time tp.
Finally, the number of lineages `(t) is given by

`(t) =
∑

n≥k≥2

k P̃ (n, k, t; tp). (S12)

We have compared this result with simulations and obtained an excellent correspondence.

Additional species at crown node

In Appendix S1 we have explained how to take into account additional species at the first
branching time t1. We argued that the conditioning step requires a system of ODEs for a
two-dimensional probability distribution. Indeed, we have to simultaneously guarantee that
the two crown lineages survive until tp and that all descendants of the additional species at
t1 become extinct before tp.

We consider the two crown species and the m additional species as ancestor species with
descendants at a later time t > t1. Due to the equiprobability of configurations, it suffices to
track the probability of any pair (n, k) with n the total number of species and k the number
of surviving lineages at time t out of the m+ 2 lineages at time t1. Denoting this probability
by P (n, k; t), the dynamics are

d

dt
P (n, k; t) = λn−1 (n− 1)P (n− 1, k; t)

+ µn+1 (n+ 1)
(

1− k(k−1)
(n+1)n

)
P (n+ 1, k; t)

+ µn+1 (n+ 1) (k+1)k
(n+1)n

(
1− 2

k+1

)
P (n+ 1, k + 1; t)

− (λn + µn)nP (n, k, t; s). (S13)

Note the difference with (S11) in the third line. The initial condition at t1 is given by
P (m+ 2,m+ 2; t1) = 1 and all other P (n, k; t1) = 0. The probability we are interested in at
time tp is

∑
n≥2 P (n, 2; tp).

The same approach can be used to compute the likelihood of a phylogeny with additional
species at the crown node and with species extant at time tp but missing in the phylogeny.
If we want to guarantee that all additional species at the crown node become extinct before
time tp, then we can use a system of ODEs for a two-dimensional probability distribution
P (n, k; t) analogous to (S13). The variable k tracks how many of the m + 2 species at the
crown node have descendants at a later time t, so that we can impose that none of the m
additional species at the crown node have descendants at the present time tp.
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Appendix S3 – Bias in maximum likelihood estimation

Figure S2 shows lineage through time (LTT) plots of the DDL+E model for different param-
eter combinations. The parameters used in panels a, c, e and g correspond to those in Fig.
1a. The parameters used in panels b, d, f and h correspond to the 50th percentiles of the
maximum likelihood estimates calculated for trees simulated with the parameters from panels
a, c, e and g, respectively (see Table 1). By comparing panel a with panel b (or c with d and
so on), we can see that the geometric mean LTT dynamics are similar between the original
parameters (a) and the maximum likelihood estimated parameters (b). However, we see that
the range of LTT dynamics that arise under the original parameters (a, c, e and g) is much
broader, especially toward the present. The observation that the average LTT expectation
is almost identical under quite different DDL+E parameters but that the variance is much
greater under the original parameters may explain why we observe bias in the maximum
likelihood estimates.
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Figure S2: Lineage through time (LTT) plots showing the geometric mean (solid line), in-
terquartile range (dark grey) and 95% confidence interval (light grey) from 10,000 simulations
of the DDL+E model under different combinations of parameters. The parameters used in
panels a, c, e and g correspond to those in Fig. 1a. The parameters used in panels b, d, f
and h correspond to the 50th percentiles of the maximum likelihood estimates calculated for
trees simulated with the parameters from panels a, c, e and g, respectively (see Table 1). Tree
simulations were conducted using a modified version of the R code in geiger [1].
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